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Abst rac t  

We present a non-interior  point  based,  polynomial- 
time,  algorithm for  solving  certain classes of rank 
minimization  problem.  Some of the  structural prop- 
erties of the  rank  minimization  problem  are  also 
presented. 
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1 Int roduct ion  

The present note grew out of the discussion between 
the  authors on a non-interior  point based algorithm for 
solving a class of rank  minimization  problem (RMP). 
The R,MP is formulated  as follows: given a symmetry 
preserving  linear map M on the space of symmetric 
matrices,  and a  particular  symmetric  matrix  &,'solve, 

where the inequality "2" is interpreted in the sense of 
Lowner,  i.e., .4 2 B signifies that  the  matrix A - B 
is  positive  selni-definite. For a given map M on the 
space of symmetric  matrices  and a symmetric  matrix 
Q, the corresponding  instance of the rank minimization 

'Email: gu~vitst?resea~ch.nj.nec.com 
2Also affiliated with Technion, Israel Institute of Technology. 
3Email: mesCahiOha.fez.jpl.nasa.gov; research of the  author 

was carried out at  the  Jet Propulsion Laboratory, California In- 
stitute of Technology, under a contract with the National Aero- 
nautic  and Space Administration. 

problem  is  denoted by RMP(Q, M ) .  In  this note'we 
shall  always  assume that Q 2 0. 

Initially,  in $2, we restrict  our  attention  to  linear  maps 
which have the  form, 

after  delineating  on  some of the  structural  properties of 
the corresponding RMP, we propose an  algorithm for 
its  solution.  In $3 we proceed to  make two  important 
generalization of the result  presented in $2 which cor- 
respond to having a linear map which is  induced  from 
an  arbitrary  monotone linear map, or from  the discrete 
Riccati  equation. 

The restricted class of RMPs considered in $2 was first 
studied  in 141, and  subsequently  generalized in [3]. In 
these works, it was observed that  in solving this class of 
the  RMP's,  the objective of minimizing the  rank can  be 
substituted by minimization of the  trace. As a result, 
the problem could be solved via the recently  proposed 
interior  point methods for  solving  Semi-Definite  Pro- 
gramming (SDP) [5]. 

The purpose of the  current  note is to show that a sim- 
ple,  non-interior  point  based  solution method for  this 
class of RMPs, as well as for those discussed $3, can be 
proposed which is more efficient than  the interior  point 
based counter-part. 

A few words on the  notation  and  some  preliminaries. 
For a matrix A, R(A)  and N ( A )  denote  its  range space 
and  null  space, At its pseudo-inverse. SnXn denotes 
the  space of real symmetric n x n matrices;  the in- 
ner product  induced by the  trace of the  product makes 

an inner  product  space. S R ; X n  , the space m n x n  



of n x n positive  semi-definite  matrices,  is a pointed 
convex cone i n  S n n x n  which  defines an  order,  making 

an  ordered vector space. However the  resulting 
ordered vector space is not a. vector lattice, since  every 
of its  non-empty  finite subset  does  not have a great- 
est lower bound  with respect the positive  semi-definite 
ordering. 

Two  operations  on  the cone is defined by rank 
and  trace, 

mn x n  

rank : 3 { O , l , .  . . , n } ,  (1.5) 
trace : St:xn + %+. (1.6) 

We note  that  trace is convex and  rank is not.  When a 
linear matrix  inequality is augmented wit 11 a rank con- 
straint,  the  resulting feasibility or optimization prob- 
lem us,ually becomes  NP-hard. For example  rank con- 
straints can be used to express integrality of the solu- 
tion  sought ill a linear  program.  Minimizing the  trace 
of a matrix  subject  to linear matrix  inequalities,  on  the 
other  hand, can  in  principle,  be solved by the recently 
proposed  interior  point  methods.  Although  minimizing 
the  trace  and  the  rank  subject  to LMI constraints  are 
two different classes of problems, we note  some  obvi- 
ous relationsl~ips between t,he two; for example, when 
all eigenvalues of the matrices  in  the feasible set are 
either zero or one,  then  the t.wo optimizat,ion  problems 
are equivalen i . 
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In  this sectioll, we present a .  sequence of basic lemmas 
which will lead us to a non-interior  point h s e d  method 
for solving (1.1)-(1.3) with Ad defined as  (1.4). Define 
the feasible svt of correspoutling RhlP as I?, i.e., 

The solution set of the RhII', consisting of all  matrices 
which have lllinimwn  rank in I?, shall be denoted by 
I?*. Note that, 

r # 0 =. r *  # 0. 

Related,  but  not equivalent to r" is the least  element 
of the set , i r one csists. 

Definition 2.1 A s u b s e t  I\ o f S R n X n  i s  s a i d   t o   h a v e  a 
l e a s t   e l e m e n l .  if thc1-e is a  711atrix X E I\ such  t h a t  for  
e v e r y  Y' E A: S 5 1 . .  T h e   s e t  of t h e   l e a s t   e l e m e n t s  of 
A s h a l l  be d t u o t e d  by h i n f .  

Proof: If A # 0, suppose that X ,  Y E Ainf. Then 
X 5 Y and Y 5 X ,  thus X = Y .  

Note that in  general,  even if I' # 0, rinf can  be  empty. 
However for the  particular  set I' (2.7), one  can show 
that this can not be  the case. 

Lemma 2.2 ([4]) If I' # 0, then rinf # 0. 

The connection between I?* and rinf can  be  established 
as follows. 

Proposition 2.3 

rinf C r* 

Proof: Recall that  if 2 5 X ,  then Ai(2) 5 
& ( X )  ( i  = 1,. . . ,  n) ,  where the eigenvalues are ar- 
ranged  and indexed in a non-increasing order. Suppose 
that for some matrix X E I', rank ( X )  < rank (2). 
Then there is a  particular  index j ,  such that A j ( X )  2 0, 
but Aj(2) # 0; however, Ai(Z) 2 0 (for all i ) ,  leading 
to a contradiction. 

In  the subsequent  discussions, we shall  assume  that 
I? # 0. Define the  linear  map F : S a n X n  -+ S a n x n  a s ,  

F:x-+Q+CM~XMT. 
i 

We  now have the following sequence of propositions. 

Proposition  2.4 For a l l  X E r, X 2 Q .  

Proposition 2.5 For all  X E r, and for all  n >_ 1, 
F(")(Q) 5 x .  

Proof: By induction: for n = 1, since X 2 Q ,  

Q + xi M T X M i  5 X. Therefore F ( ' ) ( Q )  5 X .  

Suppose that  the  statement of the  proposition holds for 
n = IC, i.e., F(')(Q) 5 X .  Then, 

MiXMT >, MiQM:. Thus Q + Ci MiQMT 5 

and  therefore, 

Proposition 2.1 A i n f  is e i t h e r   e m p t y  or a   s ing le ton .  
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Propos i t ion  2.6 

F ( " ' ( Q )  5 F(ntl)(Q). 

We  now recall the following result. 

Propos i t ion  2.7 ( [GI)  If 4 ,  Q are symmetric  maps 
such  that Pk 5 Q (X: = 1 , 2 : .  . .), and P k  5 P k + 1  then 
the limit 

P := lim Pk 
k--00 

exists. 

As a direct consequence of t.l& proposition, we obtain 
the following result. 

Propos i t ion  3.8 The matrix, 

A" := liln d k ) ( Q ) ,  
k - w  

exists. Moreorcr, f o r  a l l  S E r, X *  5 X .  

L e m m a  2.0 

X *  E r. 
Thus X* E T,,,r. 

Proof:  Olwrve tlmt X* 2 0 by construction. More- 
over, 

Q + ivfi,\-*AfT = F ( X * )  = X *  5 X * .  
7 

We close this  section  with the following note. Not only 
does the above procedure  suggests  a direct iterative 
algorithm for deterlnining t l ~ e  least  element,  and  thus 
the  minimal  rank  matrix of t,he set r ,  it also suggests 
the following two  q11estions: 

0 Can  the class of linear maps for which the above 
procedll re is npplicablc be expanded? 

0 Can one establish a ra.te of convergence for the 
above algorithm? Is the proposed algorithm 
polynolnial-t,ilne? 

We address  both questions in the following section. 

3 Two Generalizations 

We consider two important  generalization of the  RMPs 
considered in $2 for which the  above  iterative procedure 
is  applicable. We then discuss the  rate of convergence 
and  the polynomial-time  solvability issues. 

Consider the  RMP of the  form, 

minrank  X 
X (3.8) 

- Q + x - F ( X )  2 0, (3.9) 
x L 0, (3.10) 

where F : St;'" -+ is either, 

1.  an  arbitrary  monotone  linear map, i.e., X 5 Y 
implies F ( X )  < F ( Y )  or, 

2. F ( X )  = A T X ( A  - B ( R  + B T X B ) t B T ) X A ,  
where A E P X " ,  B E %"'", and R 2 0 (re- 
call the discrete  Riccati equation). 

, 
Consider the  algorithm which was proposed  in $2: 'Let 
X ( 0 )  = Q ,  X ( k  + 1) = F ( X ( L ) )  + Q ,  k 2 1. 

Lemma 3.1 Given  that  the RMP (3.8)-(3.10) is f e a -  
sible, 

X *  := lim X ( k )  

exists. Moreover, X *  is  the  solution of the  RMP. 
k - c u  

Proposi t ion 3.2 Let d = rank Q. Then, 

rank ( X * )  = rank ( X ( n  - d ) )  

i.e., the proposed iterative  algorithm can be terminated 
after a finite  number  of  steps. 

Proposi t ion 3.3 Given  that  the R M P  (3.8)-(3.10) is 
feasible, f o r  some 0 < Q < 1 and b > 0, 

IlX(k) - X*II 5 b ak.  

In  fact an iterative procedure, based on  the above algo- 
rithm, can be constructed  which proceeds from X ( 2 k )  
to X ( 2 ' t 1 )  providing a Newton-like convergence. 

The proofs of these  results  are  omitted for  brevity  and 
the reader is referred to  upcoming  journal version of 
this  note [2] 

On the question of checking the  feasibility of the  RMP 
(3.8)-(3.10) (as well as RMPs considered in $2) one  can 
in  fact  establish the following results. 

Let F be as a  monotone  linear map mixn and X *  = 
X ( n  - d ) .  Define, 

S ( X * )  := { X  E St"'" I R ( X )  c_ R ( X * ) } .  
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Proposition 3.4 S(X*) i s  F-invariant. 

Let Fs be the  restriction of F on S(X*) .  

Proposition 3.5 T h e  R U P  (3.8)-(3.10) is feasible if 
and only if the speciral radi1c.s of Fs is  strictly less than 
1. 

Simi1a.r results can he used for case where the linear 
map F corresponds to the discrete  Riccati  equation [l]. 

Let X' = X ( n  - d ) .  Write t,he matrices A and B a s ,  

Theorem 3.6 The RMP (3.8)-(3.10) with F corre- 
sponding to t h e  discrete Rtccati equation is feasible if 
and only if t h e  pair (A22,  I?,) is stabilizable. 

In  this  note we estaldishecl some  structural  and algo- 
rithmic results for ccrtain classes of rank  minimization 
problem;  as a direct. consequence, we were able  to pro- 
pose a simph,  poly~~omial-t~ime algorithm for their so- 
lution. 
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